If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-528=0
a = 1; b = 4; c = -528;
Δ = b2-4ac
Δ = 42-4·1·(-528)
Δ = 2128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2128}=\sqrt{16*133}=\sqrt{16}*\sqrt{133}=4\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{133}}{2*1}=\frac{-4-4\sqrt{133}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{133}}{2*1}=\frac{-4+4\sqrt{133}}{2} $
| 45x+45=902 | | 9.79x+6.79(x+3)=119.62 | | x*21=336 | | 3(-2k-6)=6(1+3k) | | 15-10x+35-3=32+5x | | x/3.2=25 | | x+93+35=180 | | -.76+x=-.5 | | x+28+58=180 | | x+80=110 | | 11x+7+x+17=180 | | -23=-16(t^2-t) | | 13-8x=-27 | | k-12=-12-5k | | x-1/6=-1/5 | | w+10=-8+2w | | 8x+6=2(2x+43) | | 3x*x=10 | | H=-16t^2+16t+23 | | 7(x+1)+7x=45353 | | 3t+8=10-6t | | 8x-9=5(x+2) | | 2x-(5x+6)=9 | | 5(x-1)=8x-3-1 | | v-7.42=8.88 | | w-4.54=6.6 | | y+3.2=9.83 | | 9+2x=5x+11 | | 12/17=4.20/c | | -3+x+2=7 | | 12/4.20=17/c | | 10/3=115/c |